首页 | 放到桌面

太阳能 生物质能 风能 新材料
行业|技术前沿应用|专题生态环保节能减排低碳生活上市公司
资讯图片新闻企业动态业内资讯产业分析人物访谈政策法规投资融资统计数据本网公告|展会本网参展展会动态|产业园
专题: 生物质颗粒机 生物质压块机 生物质压块燃料 生物质颗粒燃料 锂离子电池 小型风力发电机 垂直轴风力发电机 LED灯 太阳能热水器 太阳能路灯 逆变器 太阳能电池板
当前所在位置:首页 > 技术 > 科技前沿
科技前沿】 【技术文献】 【专家视点】 【设备选型】 【应用实例】 【解决方案】 【技术参数】 【行业标准

人工智能系统:将使无限制核聚变反应成为现实

来源:新浪科技   更新时间:2018-10-09 13:11:19    

  近年来,研究人员一直研究导致托卡马克装置运行中断和损坏的裂变反应,目前一种能够预测并控制裂变反应的人工智能系统被选定为“奥罗拉(Aurora)”超级计算机的首批项目之一,奥罗拉超级计算机预计2021年抵达阿尔贡国家实验室,并成为美国首个百万兆级计算机系统。目前,人工智能正在努力研究如何使地球应用无限能源供给。它最终将解开核聚变能量的奥秘,使研究人员捕获并控制驱动太阳和恒星的运行过程。

  美国能源部普林斯顿等离子物理实验室(PPPL)和普林斯顿大学的研究人员希望利用一台巨大的新型超级计算机,研究如何使用这种甜甜圈外形的设备——“托卡马克装置(tokamaks)”。

  近年来,研究人员一直研究导致托卡马克装置运行中断和损坏的裂变反应,目前一种能够预测并控制裂变反应的人工智能系统被选定为“奥罗拉(Aurora)”超级计算机的首批项目之一,奥罗拉超级计算机预计2021年抵达阿尔贡国家实验室,并成为美国首个百万兆级计算机系统。

  该计算机系统可达到百万兆每秒运算,比当今最强大的超级计算机运行速度快50-100倍。普林斯顿等离子物理实验室首席研究物理学家唐·威廉(William Tang)说:“我们的研究将利用人工智能的深度学习方式来加速进展。”

  这个开创性项目将尝试着开发一种通过实验验证的方法,用于预测和控制ITER等燃烧等离子体聚变系统,该方法将验证聚变能的有效实用性。据悉,ITER全称是“国际热核聚变实验反应堆”,也被人们形象地称为“人造太阳”,建造地点设在法国的南部小城卡达拉舍。由欧盟、美国、中国、日本、韩国、印度和俄罗斯等7个国家共同参与。TIER也被称为人类历史上最复杂的科学项目。

  ITER装置的核工程师现已招募一批火箭科学家,帮助他们制造出能够承受比太阳更热温度的超强材料。ITER装置的直径为5米,固体横截面为30×30厘米,ITER的压缩环将把巨大的磁铁固定在合适位置。

  氢等离子体将被加热到1.5亿摄氏度,比太阳核心温度高10倍,从而使聚变反应进行。该聚变反应发生在叫做“托卡马克”的甜甜圈外形的反应堆里,它被巨大的磁铁包围着,这些磁铁对过热电离等离子体起到限制和循环作用,使它们远离金属壁。

  这种超导磁体必须冷却至零下269摄氏度,像星际空间一样寒冷。长期以来,科学家一直试图模拟太阳内部发生的核聚变过程,认为它可以提供几乎无限量的廉价、安全和清洁电力资源。

  与现有裂变反应堆不同,裂变反应堆将分裂钚和铀原子,不存在不受控制聚变链式反应的风险,也不会产生长期存在的放射性废料。

  普林斯顿等离子物理实验室研制的深度学习软件系统也被称为“递归神经网络融合系统(FRNN)”,它是由神经网络组成,用户可以通过神经网络训练计算机探测感兴趣的事件。

  同时,这种人工智能“递归神经网络融合系统”能够快速预测大规模托卡马克等离子体在裂变反应时如何分解,并及时采取有效控制措施。

  这项研究的总体目标是实现国际热核聚变实验反应堆(ITER)的挑战性需求,该反应堆需要预测准确率达到95%,假警报率低于5%,至少在裂变发生前30毫秒或者更长时间发生。

返回列表 | 加入收藏 | 】
我要存档: 将本文以PDF形式 打开 | 下载
我要分享:
我要收听: 官方微博 @ @
相关文章  
·电化学合成氨催化剂研究获进展 2018/10/16 ·合肥研究院在提高高密度低杂波电流驱 2018/10/16
·福特利用车间通信技术降低十字路口交 2018/10/12 ·电容储能点凸焊机工件表面清理方法 2018/10/12
·太阳能热化学分布式供能关键技术取得 2018/10/11 ·承压锅炉与真空锅炉的对比 2018/10/09
·从分子水平解读光合作用照亮人类未来 2018/10/08 ·大连化物所二氧化碳催化加氢合成异构 2018/09/29
·美国阿贡国家实验室发明“智慧窗户” 2018/09/28 ·DARPA投资探索电磁驱动引擎:取代化 2018/09/28
·一文了解自适应巡航控制功能的工作原 2018/09/27 ·科学家利用电荷补偿机制实现摩擦纳米 2018/09/27
·人体肠道细菌可以“发电”:主要目的是 2018/09/20 ·天津大学新办法使微生物“发电热情”倍 2018/09/19
·近代物理所在碳化铀核燃料制备方面取 2018/09/14 ·磁电耦合让单分子磁体更“听话” 2018/09/13
·功能齐全的充电奶酪盘 2018/09/13 ·激光雷达研发竞争加剧 未来成本将大 2018/09/12
·大连化物所等钙钛矿微晶光电流成像研 2018/09/12 ·LNG接收站BOG回收 直接压缩与再冷凝 2018/09/11
官方微博  
能源通会员广告服务网络推广会员积分帮助中心联系我们关于我们 | 官方微博:
Copyright © 2018 伟德1946,BETVLCTOR伟德1946,伟德国际1946官网 版权所有
业务():0571-28068180,28068199,28068187  客服:0571-28068180,28902366  链接推广:0571-28902366  展会合作:0571-28068187
业务QQ:  客服QQ:  推广QQ:
 太阳能光伏:点击这里加入此群  太阳能光热:点击这里加入此群  风能:点击这里加入此群  生物质能:点击这里加入此群  LED新光源:点击这里加入此群
 储能与电池:点击这里加入此群  新能源汽车:点击这里加入此群
 总部地址:杭州市文三路477号华星科技大厦六层